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SOME EFFECTS OF BLUNTNESS
HEAT TRANSFER
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SUMMARY

ON BOUNDARY-LAYER TRANSITION AND
AT SUPERSONIC SPEEDS 1

W. E. MOECXEL

Large doumtream nwvementa of tran8i&rn obst%wedwhen the
leading edge of a )iOUowqlinder or a jlzt pti i-s 81i9h#Jy
blunted are czpluined in &ma of h redudion in Rqrnolde
number at tlw outm edge of the boundary layer due to the de-
tuched shock wave. The magnitude of this rechtion ti com-
puted for cones and wedgesfor Mach numbem to 90. Concur-
rent changtx in outer-edgeMach number and tempera.twe occur
in the direction that would hcreuse the 8tu.bi.@ of the laminar
boundary layer.

The hypothmis ti made thai tra?urdiunReynolds number h
substanti.dy unchanged when a 8harp leading edge or tip is
blunted. This hypotlwi.s law% to the conclusion that the
downstream movement of transition is inver8eJyproportti to
the ratw of suq%ce Reynoldx number with bluntd tip or lead-
ing edge to surface Reynolds number with slump tip or leading
edge. TILis conclwian ix in good agreement with the hoUow-
cylinder result at Mach 3.1.

Application of this hypothemk to other Mach numbw8 yie.?d8
the rewlt that blunting h tip of a dender cone or the leading
edge of a thin wedge 8h4nddproduce o%wnstreammomments of
tram”tion ~jactors rangingfiom 2?at Mach 3.0 to 30 at Mach
16, Tb tignifikance of this result is dimnsed wdh regard to
the possibh reduc+ionin over-allheut-tramj%rrate and friction
dragfor aircra~$~”ng at h~h supersonic speeds.

Mach number pro% near the suq%eeaof blunted cones and
weo?gtxare computed for an amunwd shupe of the detuehed
shock wave a.t$ight Mach numbers to 90. The dimipti and
stabiiity qf these proms are discu88ed, and a method h de-
scribedfor estimating the amount of blunting requwed to produce
the maximum possible downstream move-mW of tram3i$i5n.

INTRODUCTION

In an investigation of the boundary layer on a hollow
cylinder rtliuedwith the stream direotion, it was discovered
that the transition point moved downstream when the lead-
ing edge was slightly blunted (ref. 1). Similar results were
obttked with a flat-plate wing in reference 2. A more ex-
tensive investigation of the effects of leading-edge geome~
on transition (ref. 3) confirmed previous results and led di-
rectly to the explanation contained herein of the effect of
blunting on transition.

When a cone or wedge is blunted slightly (sketoh (a)), the
flow is changed in several ways, each of which oould have a
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noticeable effect

I

(a)

on the transition location. A favorable
static-pressure gradient is established near the vertex which
could tend to stabilize the laminsr layer. Downstream of
the shoulder, however, the static-pressure gradient is ad-
verse (for moderate supersonic speeds) because of the over-
expansion around the shoulder and subsequent recompres-
sion to the value corresponding to the unblunted cone or
wedge. The effect of static-pressure gradient on transition
is therefore inconclusive.

In addition to the static-pressure gradient along the sur-
face, the blunting produces a stagnation-pressure gradient
normal to the surface. This gradient results from the var-
iation in stagnation-pressure loss as the detmhed shock d-
oays from the normal-shock strength at the vertex to the
strength corresponding to the unblunted body at some dis-
tance from the vertex. For inviscid flow, the stagnation
pressure along each streamlineremains constant downstream
of the shock; hence, this gradient nofmal to the surface
would persist along the entire length of the body. The
stagnation-pressure gradient results in a shear layer who:e
thickness depends on the size of the blunted portion of the
body.
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The fact that the entropy gradient produced by strongly
curved shock waves might have appreciable effect on the
development of the boundary layer is pointed out in refer-
ences 4 and 5. I?reviously, the author of the present report
had evaluated the shear proiiles produced by detached shock
waves near the surface of blunted flat plates. An explana-
tion of the observed movement of transition in tams of
these shear prcd.les was therefore sought.

The interaction of the boundmy layer with the shear
profile produced by a detached shock wave is fundamentally
a very difiicult analytical problem; however, the condition
of most interest is one for which the interaction of the two
prcdilesis not important. Thus, if the shear profile produced
by blunting is much thicker than the boundary layer, the
rate of shear of the former is negligible compared with that
of the latter. The boundary layer then develops in a region
of negligible shear and in a Iayer whose Mach number is
almost constant and less than that produced by a sharp
cone or wedge. ,

Of particular significance is the fact that the region of
reduced Mach number near the surface is also a region of
reduced Reynolds number.2 Until the boundary layer en-
gulfs this region, its stability and transition characteristics,
as well as its friction and heat-transfer characteristics, should
be those associated with the reduced Reynolds number.
This reduction in Reynolds number near the surface of a
blunted body explains the downstream movement of transi-
tion observed in references 1 to 3 and is the basis used in this
report for comparing the boundary-layer characteristics of
blunted and unblunted bodies.

ANALYSIS

The hfach number in the intild shearlayer produced near
the surface of a blunted cone or wedge increasescontinuously
from the surface value to the value thht would exist at the
surface of the corresponding unblunted body. The Reynolds
number per unit length at the outer edge of the boundary
layer (outer+dge Reynolds number) therefore remains less
than the free-stream (or unblunted) value until the boundary
layer absorbs the entire shock-produced shear layer. If the
transition point is determined primarily by the Reynolds
number at the outer edge of the boundary layer, a progres-
sive downstream movement of transition would therefore be
expected as the leading edge or tip bluntn= is gradually
inoreased. The maximum downstream movement would be
expeoted when the blunting is sufficiently great so that the
outer-edge Reynolds number is close to the inviscid surface
value for the entire larnimu run. In the following sections,
the maximum reduction in outer-edge Reynolds number is
calculated, and the blunted area required to produce this
maximum reduction over the entirelaminar layer is estimated.

EEDUCTION IN SURFACE JiEYNO~S NUMEER DUE TO BLUNTING

At a station sufficiently far downstream of the vertex,
where the surface static pressure for a blunted body is close

s Tbfsreductionin snrfacoReynoldsnnmk due to bluntfngamdits tied onLomfnarhcat-
fng km rm?ntly k independentlymlczdaki fn reL 6 fcu hypmonio _ No at-
tempt was made, howcwer,to de5e the tldcknes and @al extent of the low Reynolds
Dumberby-wor Its elrecton ta-andtfonkntton.

to that for the unblunted body, the Reynolds number near
the surface can be written as

(1)

where subscripts n and 1 refer to inviscid surface values for
the blunted and unblunted “bodies, respectively. (All sym-
bols are defhed in appendix A.) These inviscid surfaco
values -iviJ1be assureed, as usual, to represent the outer-edge
conditions that detarmine boundary-layer development.

The use of Sutherlan&s viscosity equation yields

(2)

Dividing the numerator and denominator by the ambient
static temperature & and converting to Mach number
functions yield

(3)

where
7—1 jl@l+T *

D- (4)
1+7= M;

and

1+7$ M;
‘+:‘y-l ~

1+~ *
r= (5)

l~M~

~—1 M? +’
I+T %

The inviscid surface Mach number for the blunted body
M. is determined by the ratio pJP*, where pl is the static
pressure at the surface of the unblunted body and P, is the
stagnation pressure downstream of a normal shock at the
ElightMach numbar iWO. The inviscid surface Mach num-
bers are shown in figure 1 as a function of Mo for several cone
and wedge angles. Since the total pressure P. is less than
the total pr-ure at the surface for unblunted bodies, tho
mrface Mach number M. for the blunted bodica is less than
the surface Mach number for the unblunted bodies Ml. Tho
ditbrence between M. and Ml increases as flight Mach
mmber incre.aw.

The Reynolds number ratio of equation (3) is plotted in
Egure2 for the same cone and wedge angles as those in figure
1. This ratio decreases rapidly as flight Mach number
increases. If the transition Reynolds number is unchanged
when the leading edge or tip is blunted, and if the blunting
k adequate to covar the lamimm boundary layer with a
ndliciently thick layer of low Reynolds number air, then it
~houldbe possible to increase the length of laminar run by n
kctor inversely proportional to the Reynolds number ratio
]f figure 2. For slender cones and wedges, the possible in.
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FIGUREl.—Inviacid surface Mach number for blunted cone and wedge.

CJXMSeSin lruni.narrun range horn factors of the order of 2.o
at MO=3.0, to 10 at MO=8.0, and to 30 & iVfO=16.0. The
signiikance of such large increases in laminar run for reducing
the heat-transfer rate and friction drag for very high speed
aircmft is npparent.

Evidence thut increases in laminar run of the magnitude
indicated by figure 2 are actually attainable is presented in
references 1 to 3. In reference 3, for example, the transition
point fit MO=3.1 was moved do-ivnstreamby a factor of 2
(from 5 to 10 in. at a Reynolds number of 3.56Xl@/in.)
when the leading-edge thickness was increased horn 0.0008
to 0.008 inch. This experimental movement of transition
compares very favorably with the value 2.17 predicted Orithe
basis of the Reynolds number reduction shown in figure 2(b).

In reference 2, downstream movements by factom ranging
from 2.3 to 3.6 were observed for a blunted flat plate at
various angles of attack at W=4.04. The movement pre-
dicted by figure 2(b) for this Mach number is 3.57. For
swept wings, little or no downstream movement was observed
in reference 2. This is in agreement with the expected we@-
ening of the leading-edge shock due to sweepback. Whether
downstrcmn movements of the order of magnitude predicted
by figure 2 are attainable at higher Mach number or for
other body shapes remains to be established by further
experiments,

*
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Flight PMch number,M.

(a) Cone.
(b) wedge.

FIGURE 2.—Effeot of blunting on Ikynoldc number near surface of
cone and wedge. Ambient statio temperature, 392.4° R.

ESTIMATIONOF BLUNTNESSREQUIREDTO OBTAINMAXfNUM
MOVEMENTOF TRANSITION

In order to determine the bluntness area required to cover
the entire laminar boundary layer with a Iow Reynolds num-
ber layer of negligible gradient, it is convenient to deiine a
thiclmess of this layer which limits the Mach number to
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vrdues near the inviscid surface value. A suitable thickness
is tbe distance from the surface to the streamline that passes
through the sonic point of the detached shock wave (point
where the Mach number just behind the shock is unity).
From the vertex to the sonic point the stagnation pressure
downstream of the shock does not vary greatly; consequently,
the Mach number should remain near the inviscid surface
value in the layer thus defined.

An expression for the thiclmess will be derived under the
assumption that tbe shear proiile produced by the detached
shock does not diiluse or dissipate, that is, the proiile remains
unchanged until it is engulfed by the boundary layer. The
rate of dissipation of the shock-produced shear layer, which
is discussed in appendi.. B, tends to increase the bluntness
area required to produce a given thickness of the low Mach.
number layer.

With dissipation neglected, the thickness of the low Mach
number region can be estimated by means of the detached-
shock-wave theory of reference 7. In this theory, the de
tachd shock wave is assumed to have a hyperbolic form in-
dependent of the shape of the body tha; pri5ducesit. This
form has been found to aggee well with experimental results
for a large range of body shapes in the moderate supersonic
Mach number range (ref. 8) but becomes more questionable
w hfach number increases. The location of the shock sonic
point relative to the body is of particular significance for the
present calculation. The assumption of reference 7 that the
sonic line is straight and inclined normal to the mean flow
direction is probably not a good approximation in the hyper-
sonic speed range. Accordingly, the relative thiclmess of
the low Reynolds number layer will be estimated from two
separate assumptions: (1) the shock sonic point is located
according to the method of reference 7, and (2) the ordinate
of the shock sonic point is equal to half of the ordinate of the
body SOtiC point. The latter assumption stems horn con-
sideration of a spherical-nosed body with the shock parallel
to the surface at very high Mach numbers, where the dis-
tance from the shock to the body at the mis is of the order
of 0.o.5 times the radius of the nose. The shock sonic point
at very high lMach numbers occum at a shock angle of ap-
proximately 70° (corr~ponding to a radial angle of about 20°
from the center of the spherical nose). The body sonic
point, on the other hand, Ii= at a radial angle of about 45°.
A layout of the parallel shock for these conditions yields
appro.simately the result repressed by assumption (2). .

In order to atimate the thickmss of the low Mach number
layer, the hlach number in the layer is assumed to be con-
stant at a value corresponding to the mass centroid of the
layer. This hlach number, denoted by M& is determined
from the ratio pJ1’c, where p, is the static pressure on the
surface of the unblunted cone or wedge and PC is the total
pressure downstream of the shock on the centroid stream-
line. (A simple and satisfactory estimate of PC can be ob-
tained by using the arithmetic mean of the stagnation pres-
sures at the sonic point and at the vertex.) The continuity
equation for the layer shown in sketch (b) can be written

PcAn(A*/A)Mo=PdJA*/A)Mo (6)

where A. is the area ef the low Mach number layer and &

--- ,=

(b)

is the free-stremn area of the stream tube between the nxis
and the shock sonic point S. If the bluntness of tbe body is
deiined as its cross-sectional aren at the sonic point ~~
[sketch (b)), the ratio of tbe area of the low Mach number
layer to the blunted area becomes

A. As PO(A */A)arO
Z.=GPC (A */A).=

For the assumption that the shock sonic

(7)

point is loc&d
according to tie method of reference 7 (a&mption (1)),
the ratio &/&B is given by

(8)

where B=~O(A*/A)~o and ~ is the menn inclination of thePc
sonic line defined in reference 7. For the assumption thnt
the ordinate of the shock sonic point equals half the ordinate
of the body sonic point (assumption (2)), As/As~ is equal 10
0.5 for the two-dimensional case and 0.25 for tho misym-
metiriccase.

The area of the low Mach number lwer dehed bv GUUO-
tion (7) is shown in figure 3. For assu&ption (1), th &ea
is seen to increase rapidly with increasing Mach numbers
for the blunted flat plate (OW=O) and for the blunt-nosed
cylinder (Oe=O). However, for wedge half-angles greater
than 5° and cone hti-angles greater than 10°, the won does
not vary greatly with Mach number. For assumption (2),
the area of the low Reynolds number layer is considerably
smaller than for wwmption (l). It is expected that the
actual values will agree more closely with assumption (1)
values at low supemonic speed and with assumption (2)
values at very high speeds. Since the thickness of the low
Reynolds number layer has been arbitrarily defined, it may
be suiiiciently accurate at this stage to state that the ratio
AJz& is of the order of unity for slender blunted cones rmd
wedges at all Mach numbers.

With the thickness of the low Mach number and low
Reynolds number layer thus detined, Lheblunting required
to provide a low external strwn Reynolds number for the
entire laminar boundary layer to the expected or desired
transition point can be wtinmted. This is done by calculat-
ing the laminar boundwy-layer thickness at the espected
transiticm Reynolds number, which is based on conditions
in the low Mach number layer near the surface. By equating
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FmuRE 3.—Area of low hlach number layer for blunted cone and
wedge.

this thickness to the thiclmem of the low Reynolds number
layer, the required values of the bluntness area can be
caludrd ed.

Thus, for blunted wedges the required ordinate at the
body SOtiC point is

while for blunted cones (with ~~,<<rl),

(9)

where A~/A.gBis given in figure 3 and rl,1,is the radius of tbe
blunted cone at the expected transition point. Equations
(9) md (10) show that the amount of blunting required to
cover the Iaminar boundary layer with a low Reynolds
number layer is not large. For the wedge (eq. (9)), the ordi-
nate of the body at the sonic point need be only of the order
of magnitude of the boundary-layer thickness at the m-
pected transition point; for the cone (eq. (10)), the required
radius of the body at the sonic point is of’ the order of the
geometric mean of the body radius and the boundary-layer
thickness at the expected transition point.

The required bluntness is considerably reduced if the dis-
placement effect is considered, since the low Reynolds number
layer is moved away from the surface by an amount equal
to the displacement thickness of the boundary layer (ref. 3).
The required values of ys~ should therefore be calculated
with (~—6*)~, in place of 3,, in equations (9) and (10).
Expressions of 8 and 6* for constant surface tempwatum
were obtained horn equations (18) and (22) of reference 9,
based on the flat-plate theory of reference 10. The value of
6 was assumed to correspond to a velocity ratio of 0.99. At
the transition point, these expressions can be combined to
yield (for ~= 1.40)

(a-(a=3%E \ ‘1’)
where L~, is the distance along the surface to the transition
point and C is the proportionality constant in the linear
viscosity-temperature variation. For cones, this expression
is divided by ~. In terms of (~—6*)~,, the bluntnew
required to cover the laminar boundary layer with a low
Reynolds number layer becomes

VSB (WJtr-(~*/Qtr—.
L,, (A#A9,) (12)

for wedges and

Y.m—.
L,, <

for cone9.

fi(ar[(ik(al “ ,,3)

(A~AsB)
I
J

With equation (12), the calculated bluntness arem agree
as closely as could be e.spectedwith the experimental values
that produced the mtmimum downstrea movement of
transition in the experiments of reference 3. This maximum
downstream movement was found to take place for a leading-
edge thickness of about 0.008 inch, which is about two-thirds
of the calculated value. Further increases in leading-edge
thickness had no appreciable effect. on transition location.

mVISCmMACHNUMB= PROFILESFOR BLUNTEDCONESANDWEDG~

Although the maximum effect of blunting on boundary-
Iayer development and transition depends on the portion
of the shock-produced shear layer near the surface, the entire
shear profile is of interest if the outer edge of the boundary
layer moves out of the low Reynolds number layer defined
in the preceding section. In order to detarmine the nature
of the entire shock-produced shear profile, the shape and
location of the shock must be prescribed. For moderate
supersonic speeds, the hyperbolic form a.wumed in reference
7 is adequate; but as the flight speed approaches the hyper-
sonic range, the shape of the shock is increasingly influenced
by body shape. This situation arises pmtly because the
region between the shock and the body becomes smaller as
L$ increases; consequently, characteristics from portions
of the body far downstream of the sonic point reach the
shock before it has decayed to its asymptotic strength. In
addition, the overexpansion near the shoulder of a slender
blunted body, which takes place at lower speeds, gradually
becomes an underexpansion at hypersonic speeds, that is,
a l?randtl-Meyer expansion from the sonic point fails to
reduce the pressure to, or below, the asymptotic static pres-
sure. A rather long process of reflection of expansion waves
between the shock and the body must, therefore, take place
before the asymptotic pressure is reached on blunted cones
or wedges. This consideration also affects the distance
required to obtain the inviscid surface Mach numbers and
Reynolds numbers calculated in the preceding sections. A
more accurate evaluation of the effect of blunting would
include the variation of outer-edge Mach number and Reyn-
olds number along the ent~e body due to the pressure
gradient.
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For computing the shock-produced shear proiile, the
narrowing region between shock and body as flight speed
increases introduces difficulties, in that no general shock
shape is available beyond the sonic point and the asymptotic
profile may be so far downstream as to have no practical
significance. It was nevertheless felt to be worthwhile to
compute these asymptotic profiles for a very high iMOwith
the hyperbolic shock form of reference 7, if only for com-
parison with more accurate future computations based on
experimented shock forms or exact characteristic solutions
for particular bodies.

The computation method is presented in appendix C, and
the resulting asymptotic intild shear prof31esare shown in
figure 4 for fight Mach numbers from 2 to 20. Indicated
on each profile is the thickness of the low Mach number
layer as deiined in the preceding section. It is seen that
this definition does, in fact, restrict the Mach number to
values close to the surface value.

The profiles for blunted wedges difler qualitatively fkom
those of blunted cones at all Mach numbers. For the
blunted wedges the Mach number gradient is zero at the
surface; whereas, for blunted cones the gradient has a posi-
tive value. This difference is traceable to the fact that, at
the vertex of the shock, the flow area is proportional to the
ordinate in the two-dimensional case and to the square of
the ordinate in the axisymmetic case.

The profiles of figure 4 should be good approximations for
values of J& less than 5.0 but seem to become much too

:6 1.0 I.4 1.8 2.2 2.6 3.0Mothnumber, Af

(c) Flight Maoh number, 3.0; wedge.
(d) Flight Mach number, 3.0; cone.

Mach numlw, W

(a) Flight Maah number, 2.0; wedge.
(b) Flight Maoh number, 2.0; cone.

Mach number, M

(e) Flight Maah number, 6.0; wedge.
(f) Flight Mach number, 5.0; cone.

FIGURE4.-Inv@cid hfaoh number profiles for blunted cone and wedge.
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thick at hgher Mach numbers, particularly for the flat
phke (Ov=O) and for the bhmtaosed cylinder (0.=0).
This thickness is associated with the overestimation of
AS/AsB by the method of reference 7 at th~e Mach numbers
(see fig. 3).

For higher cone and wedge angles, the shock decays more
rapidly to the asymptotic strength, and the resulting pro-
61es appear to be more in harmony with expectations.

Although the computed profiles are not reliable at high
Mach numbers, they agree well with messured profiles at
Mach 3.1 (ref. 3). If more accurate shock-produced profiles
are desired for higher speeds, the shock form must be ca-
lculatedfor each body shape. Such computations would be
useful for estimating the variation of transition location as
the blunted area G gradually increased, but are not required
for estimating the maximum downstremn movement or the
blunted area required to produce this movement.

CH.4NGIM IN LABfUiAR RECOVERY TEMPERATURE, HEAT-TRANSFER

RATIL AND FRICTION COEFFICIENT

The downstream movement of transition due to blunting
means that larger portions of the aircraft surfaces will be
subjected to laminar, rather than turbulent, heaiXransfer
rates and friction coe5cients. The blunting should, there-
fore, produce substantial reductions in over-all heatAransfer
rate and friction drag. There is, however, an incresse in

. L04

f
~

~ _

$’ ~

3:-

i :1.02 .
.%
E =$.>

z
,

s
Loo

1.0

,

.9
!\

Temy:lure

~wh’
\\

I I /

I I \h14.0J-l---- T
I I F+-t’l I It

.7
I I

.9! I I I I
4 8 12 ,,. .. . . . . 16 20

Fhght MIICIIW710W, Mo

FIGmUI 5.—Effect of blunting on kninar heat-transfer rate, skin
friction, and equilibrium temperature.

lamimw equilibrium recwwy temperature corresponding to
the reduction in Mach number and $ change in lamimr beak
transfer rate and friction coefficient due to the reduction in
Reynolds number. These must be evaluated in order to
estimate the magnitude of the advantages due to blunting,

The heat-transfer coefficient and friction-drag equations
of reference 11 are used for this estimate. Although these
equations are based on the assumptions of constant specific
heat and Prandtl number and no dissociation, they agree in
order of magnitude with more exact numerical computations
even at hypemonic speeds (ref. 12).

The ratio. of laminar heat-tiansfer rate with and without
blunting can be written

:“?(-)=%%:$’::““
‘ tl’ 1

where D and r are deiined by equations (4) rmd (5), t6,n and

t., I are equilibrium recovery temperatures with and without

(+-2Jblunting, and & O M is the shear function of reference

11 evaluated at the surface. This function is given in refer-
ence 11 for several outer-edge Mach numbers Mm and
several ratios of surface temperature to outer-edge tem-
perature tu/tm.

The temperature-difference ratio in equation (14) can be
written

where the laminar recovery factor is assumed to be 0.S45
and 7 is 1.4. .

The ratio of equilibrium surface temperatures with and
without blunting is obtained from the definition of recovery
factor: .

- ~=$&o.845
ox—

whence

t
0.155 +0.%5

.,._l+O.2 M:
~— 0.155

1+0.2 M;+0”M5

(16)

(17)

- The laminar skin friction ratio is, from the equations of
reference 11,

The ratios of lsminar recovery temperature, skin friction,
and heat transfer for flat platea are shown in figure 5.
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Although there is a slight increase in lamkw equilibrium
temperature for the blunted flat plate (this was observed
experimentally in ref. 3), the laminar skin friction is reduced
over the entire range of flight Mach numbers, and the heat-
trrmsfer rate is reduced except for wall temperature near
equilibrium. (The rapid increase in the heat-tramsferratio
near recovery temperature arise9horn the small incxease in
recovery temperatnre due to bhmt~o. The heat transfer
without blunting approaches zero for these valuea, whereas
the heat transfer with blunting becomes small but is not yet
zero,) Figure 5 shorn that blunting the leading edge of a flat
plate or cylinder can produce, in addition to the longer
laminar run, a small but signi6cant reduction in tibe skin
friction and heat-transfer rate of the ltiar boundary
layer itself.

COOLING REQIJfREbfRNT8 FOR STABILITY

The static temperature at the edge of the bonnd~ layer
is considerably higher for a blunted cone or wedge than for
sharp bodies. The ratio t#l is, in fact, given by l/D (eq.
(4)). This increase in outer-edge temperature means that,
for a given surface temperature tw, the ratio {./tm is smaller
than t&. The outer-edge Mach number is also reduced.
Shown in figure 6 are the outer-edge conditions for a blunted
and unblunted flat plate and for a blunted and unblunted
10° half-angle cone for a surface-to-ambient temperature
ratio of 4.0. These conditions are compared with two of the
Iaminar stability limits given in referent= 12 and 13. This
comparison shows that blunting moves the outer-edge con-
ditions far into the stable region in the hypersonic speed
range. (Although the stability-range curves shown are
based on two-dimensional disturbance theory, recent com-
putations by Dunn and Lin (ref. 13) indicate that tbree-
dimensional disturbance theory also yields laminar stability
to extremely high Reynolds numbers but that somewhat
lower surface temperaturc9 are required.)

EFFECT OF BLIJNTING ON HEAT-TRANSFER RATE NEAR THE NOSE

In order to estimate more accurately the net decrease in
heat-transfer rate due to blunting, it is necessary to deter-
mine bow the heat-transfer rate near the nose of the blunted
cone differs from that on tbe pointed cone. h estimate of
this difference cm be made by comparing the heat-transfer
rate for the sharp conical nose with that for the inscribed
spherical nose (sketch (c)).

(c)

!
; I . (a}

0 4 8 12 16
Outer-edge

n Theoretiml sta@lity

-&.&%%”’ H

H————Ret 13
—-— -HRef. 12 ,

I--T tt-t--i

MOch rwnber, Mm

(a) 10° HaWangle cone.
(b) Flat plate.

FIG- 6.—Effect of blunting on stabih~ parameters for flat plate
and 10° half-angle cone. Surface-to-ambient temperature ratio, 4.0.

This heat-transfer ratio can be written as

(19)

where the subscripts sp and c refer to the spherical and
conical noses, respectively. The area ratio of equation (19) is

A,p_2 tant)c
— (l–sin 0.)

Z— cos e.
(20}

and the temperature di.fTerenceratio is

The mean heatAmmsfer coefficient for the spherical nose is
assumed to be the stagnation point value presented in
reference 14:

(22)

a Prandtl numb~-of 0.72 and for a ratio of wall temperature
to stagnation temperature (tW/TO)close to z&o (correspond-
ing to cooled surface at a very high Mo).3 The stagnation
premure coefficient C,,,t is 1.S4 for 7=1.4. The mean cone
heat-transfer coefficient is, from reference (15),

(23}

J SfncQthe pnblfcetionofref. It I@lIotko and Cohenhevefoundthat the orpreshn for
c@ventkein forsq@manfoflawbfn&rcir. Themrmtesprmion forthtscanstan tistbet
gfvenalx3v&
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where (~U/mc is 0.51. The ratio of heat-transfer co-
efficients, therefore, becomes

where P,~ is the stagnation pressure behind a normal shock
at Mach number L& The heat-transfer ratio obtained by
substituti~~ equations (20), (21), and (24) into equation
(19) is plotted in figure 7 for cone half-angles of 10° and 20°
and for a surfac~to-ambient static-temperature ratio of
1.0. The over-all heat transfer for the inscribed spherical
nose is seen to be less than that for. the conical nose. The
blunted nose, therefore, has the advantage of a lower heat-
transfer rate near the vertex as well as along the downstream
surfacw.

DISCUSSION

The preceding sections have shown that the Reynolds
number per unit length at the outer edge of the boundary
layer is lower for bhmted fuselages and wings than for un-
blunted ones. The limited data available agree with the
conclusion that the transition location can be increased by a
factor of the order of the ratio of the surface Reynolds
number without blunting to the surface ReynoIds number
with blunting. This factor increases rapidly with increased
flight speed, particularly for moderately slender wings and
bodies.

As an example of the magnitude of this effect, a 10° half-
ar@e cone at a Mach number of 15 will be considered. If
the transition point is located 1 foot downstream of the
vertex without blunting, it m“ght, on the basis of figure 2,
be moved 25 feet downstream of the vertex if the tip is
blunted.

The bluntness required is, from equations (11) and (13),

C)i()y=l.15 —
v Ret,

where the value of An/&~ corresponding to As/&~ =O.25
chas been used. If ~ is of the order of 10-e, then the re-

quired value for ys~ is about 11 inches. The ratio of the
blunted area to the cross-sectiomd area of the cone at the
transition point is, therefore, approximately O.O3. If the
transition point (25 ft) is near the end of the body, the over-
all heat-transfer rate would be reduced by blunting from
the value corresponding to ahnost completely turbulent
flow to the value corresponding to completely laminar flow.
The blunted cone would, therefore, heat up much more
slowly than the pointed cone and would require much less
coolant to maintain a given surface temperature. The ratio
Lw/ya is about 600; therefore, the effect of dissipation of
the shock-produced shear layer can probably be neglected
(see appendis B).

Furthermore, during the heating process the ratio of sur-
face temperature to outm-edge temperature remains much
lower for the blunted cone or wedge (fig. 6) so that the
advantages of cooled surfaces with reggd to laminar stabil-

I -t--l I I [ I
} 2-6I
1 1 1 1 I 1 1 I 1 , ,

I I, , , I
10

&.5& ’24
I Ill I

681012141618 20 22
Flight Mach number, M.

Fmmm 7.—Comparison of laminar heat-transfer ratea for sphmionl
and conical noses. Surface-t~ambient statio-temperature ratio, 1.0.

ity prevail longer than for the pointed cone or sharp-edged
wedge. Both the low surface Reynolds number and the
higher outer-edge temperatures work toward preservation of
laminar flow for a much larger distance along the surfaces of
blunted bodies and wings.

These advantages -ivith regard to increased lamimm run
and increased lamimw stability appew to involve no serious
disadvantages. The friction drag is reduced, and the totrd
drag should not increaae appreciably for the small required
values of the bluntness ratio. Reference 16 shows that, for
spheric&tipped cones of fixed total length, the total drag to
Mach number 7.o is very near the value obtained for the
sharp-tipped cone for ratios of nose diameter to masimum
body diameter less than 0.25. .

The quantitative effects of blunting on transition location
previously computed are based on the hypothesis that the
transition Reynolds number is substantially unchanged when
a body with a sharp tip is bhmted. Although this hypoth-
esis produces good agreement with the experimental results
of reference 3, the possibility should certainly be kept in
mind that at higher Mach numbers or with other body
shapes the transition Reynolds number moy be altered by
such factom as pressure gradient and outer-edge Mach and
Reynolds numbers. Furthermore, as the length of lmnimm
run increases, the possibility of premature transition due to
surface roughness or stream turbulence also increases, and
the dissipation of the shock-produced shear profile becomes
important. Whether any of these factors will seriously re-
duce the attainable downstream movement of transition clue
to blunting remains to be determined experimentally.

Many theoretical problems also require solution before
the quantitative eflects of blunting on transition can be
predicted with confidence. One basic problem, of COWSO,is
that of the development of a laminar boundary layer in a
nonuniform external stream. Solution of this problem
would establish the magnitude of external shem that is
negligible and, consequently, the conditions for which tho
boundary layer can be assumed to develop in a layer of
reduced Reynolds number corresponding to the mean value
near the surface. This solution might reveal whether, w
indicated by the results of reference 3, it is sticient, in
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gwwal, to obtain the maximum reduction in Reynolds num-
ber only for the inner half or two-thirds of the boundary
luyer rather than at the ,outer edge. The latter question,
however, involves predicting the location of transition for
various velocity profiles, which camot as yet be done even
for lamimw layers in a uniform external stremn. Since the
required blunting is small, however, this question-appems to
be of secondary importance.

CONCLUDINGREMARKS

It is clear from the preceding discussion that many ques-
tions remain unanswered in this report. The principal ob-
servation that the Reynolds number and Mach number near
the surface are reduced by blunting and also the approxi-
mate magnitude of the reductions are fairly well established.
The assumption that the boundary-layer development should
be determined primarily by the reduced Reynolds number
and Mach number near the surface rather than by the flow
outside the inviscid shear layer also seems reasonable. The
principal benefits from blunting, however, lie in the hyper-
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APPENINX

SYMBOLS

area
ieentropic area contraction ratio from

Mach number ill to Mach number 1.0
speed of sound

; (&A)Mo

u

constant in hem viscosity-temperature
relation

stagnation-pressure coefficient

sonic speed range, where many of the quantitative results
calculated herein are subject to corrections whose magnitudes
are a9 yet urdmown. Qualitative ~timatcs indicate that
some of these corrections, such as the displacement eflect or
the pressure &adients, either inviscid or self-induced by the
boundary layer, should have a favorable effect on the down-
stream movement of transition. Other dlects, such as sur-
face ronghncss, stream turbulence, or chang~ in transition
Reynolds number, may tend to limit the downstream move-
ment of transition to values less than those predicted. Dis-
sociation at very high Mach numbem may have a significant
effect on outer-edge conditions and, consequently, on the
maximum transition movement to be curpected. As usual,
when so many unknown factom contribute to a phenomenon,
experiment must be relied upon to determine which factors
are dominant and which are of minor importance.

LETVIS FLIGHT PROPULSION LABORATORY

‘)lATIONfi fbvmoRy CozmnmEE FOR ARRONAUTIM

CLEVELAND,Oreo, November21, 1966

shear function at surface (ref. 11)

heat-transfer coefficient
thermal conductivity of air
length of conical tip
Mach number
Nusselt number
stagnation pre9sure
static pressure
heat-transfer rate
Reynolds number
recovery factor or radius
cone radius at station whwe profiles are

determined
Sutherland’s constant for air, 198.6° R
stagnation temperature
static temperature
surface temperature
velocity
velocity downstream of normal shock

ahead of spherical nose
distance along surface

A

subscripts:
c
c
e
n

s
SB
Sp
&
b
w
w ._

o
1

m

superscript:
t“

coordinate normal to surface

-
t.+s
tl+s
ratio of specific heats, 1.40
boundwy-layer thickness
boundary-layer displacement thickness
inclination of sonic line (ref. 7)
semivertex angle of cone
semivertex angle of wedge
coefliciant of viscosity
PIP
density
shear force at surface
shock angle

centroid -
cone
equilibrium
inviscid surface values for blunted cones

or wedgw
sonic point on detaghed shock wave
sonic point on body
~here
stagnation
transition point
wedge
surface values
ambient conditions
invimid surface values for unblunted

cone9 or wedge9
value at outer edge of boundary layer

local conditions in inviscid shear layer
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APPENDIX B

DISSIPATION OF THE LOW MACH NUMBER LAYER

In order to estimate more closely the amount of blunting
required to maintain a given thiclmess of the low Mach
number layer, the rate of dissipation of the shock-produced
profle must be considered. The simplest method for esti-
mating the rate is to consider the profile produced by the
detached shock wave as a step function (sketch (d)) in which

-————

I(

(d)

the outer velocity is that corresponding to the unblunted
body and the inner velocity is that produced near the surface
by blunting the vertex. The profile dissipation can then be
considered identical to that at the interface of two parallel
laminm jets emerging at the same static pressure. The
equation for the velocity profle in the interaction region is
given in reference 17 for the case when U1and Zl=alit% by a
small amount. The appropriate equation is

%a=:{K25’l+R!2iT’1}‘1)
where y. is the initial thickness of the low Mach number
layer, l?ev=is Reynolds number based on y, and outer-flow
conditions, and @(a) is the error function of a. Profiles
calculated from equation (I31) for I&a= 104and for several
values of x/ya are shown in figure 8. Apparently, the veloci ty
near the surface does not change appreciably until z/y. is
of the order of 1000. Although these proii.lesare valid only
for small differences between ~, and U., the order of magni-
tude of the dissipation remains the same for large difhrences
(see fig. 4.11, ref. 17). The value of x/y.<1000 is, therefore,
probably a good estimate for the length of run in which
dksipation of the shock-produced shear profle can be
neglected if this profile remains lamimw.

If transition to turbulence takes place in this layer, the
len@h of run for which tilpation can be neglected is ap-
preciably reduced. ISo e.sperimentmlresnlts are available
-to estimate under what conditions the shock-produced shear
profile is likely to undergo transition. However, an indica-
tion of whether transition is a poasibti~ in this layer can

2.0

\
j& _

I UI

I

Iu. -J-

[.6
/

— — — —

12 .

‘/Yn
\e
> 0

~ 100

.s x

.4

\ ~
0 .2 .4 .6 .8 Lo

U-ul

u. -U1

PIUIILIWOFigure 8.—Laminar diffusion of step velocity profile. Re~nR——
#l

be obtained from the stability criterion for parallel jets
developed in reference 18. This criterion states that tho

()interface can become unstable if the quantity — p—
;:

vanishes in the interface profde. However, the profile is
stable if this quantity vanishes only at points in the profile
where the velocity satisiies one or both of the following
inequalities:

U<u,–al

Dun+a.

These conditions assure that disturbances from either stremm
will not reach a layer in which amplification is possible,

In terms of Mach number profiles, theso conditions cm be
stated a~ follows:

The profile is stable to twodimensional disturbances if the

‘uan’ty%~;~)

vnnishes only nt points where

M<
Ml–l

4(7–1)(M,+2) ‘
(B2)

or where

(133)

The latter condition cannot be sntistledfor ~na2.0. ~on-
sequently, the stability of the profile depends chiefly on

‘( ?~)

whether ~ ~ ~~ vanishesonly where condition (B2)
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isfulfllled. Some sample.computations based on the profiles new of the low Mach number layer at a given station may
of figure 4 indicate that rendition (B2) is generally satisfied be com”derably greater than cxdculatedon the basis of lami-
for the blunted-cone profiles but not for the blunted-w-edge nar flow. This discussion must necessarily be inconclusive,
profiles. The latter profiles, therefore, are more inclined to since the location or-even the esistence of transition cannot
undergo trrmsitionthan tho former. If transition occurs, the I be established from stabili~ theory alone.
nmount of bluntness required to produce a prescribed thick-

APPENDIX c
MACH NUMBER PROFILES PRODUCED BY DETACHED SHOCK WAVES

The Mach number profiles normal to the surfaces of cones
and wedges with slightly blunted tips or leading edges can
be calculated from the one-dimensional continuity equation
if (1) the form and location of the detached shock wave are
known, (2) the static pressure is constant normal to the
surfmm, and (3) diffusion and dissipation of the profile are
neglected. Condition (1) is most conveniently satisfied
by using the detached-shock-wave theory of reference 7.
Condition (2) is satkfied at stations sufficiently far down-
strcwrnof the nose or leading edge where the surface static
pressure hns reached, or closely approached, the value ob-
tained with unblunted cones or wedges. At moderate
supwscmic Mach numbers, the required distance h of the
order of 3 to 10 tinm the thickness of the blunted portion of
the nose or lending edge. ‘J’his condition is not quite 9atis-
ficd for blunted cones, because the flow field approaches a
conical distribution characterized by a gradual decrease of
stntic pressure from the surface to the shock wave. But if
the prcdile extends only a small portion of the distance from
the surfaco to the shock wave, this gradient can be neglected
without serious error. Condition (3) remains an wsnmp tion
whose validity decreases as the distance along the body
increases. It. implies that the profile remains unchanged in
form for an unlimited distmw downstream of the vertex.
As pointed out in appendix B, this assumption appema to
be fairly good for distances of the order of 1000 times the
thickness of the blunted portion of the body if the profile
remains lnrnimw.

The profile computfition is set up with the aid of sketch
(o), which applies either for cones or wedges. If the sonic-

/

s
—.—_r
-L

(e)

point area of the body is used for reference purposes, the
continuity equation con be written as

(cl)

or

A’

J

A/~Bpo (A*/A)~o d A

~B= (1 (–)~ (A*/A)~’ ASB

where the primes refer to local conditions in
shear layer. Since the stagnation preswre
streamline remains constant downstream of

(C2)

the inviscid
along each
the shock,

P’/PO is the stagnation-pre9sure ratio across the shock at
the point where the streamline bounding the area A ~mters
the shock. If the shock angle at this point- is p, then the
total-pressure ratio can be witten (ref. 19)

The Mach number ill’ at the area A’ can also be
in terms of shock angle by the relation:

(C3)

espressed

(C4)

The function (A*/A)~t as well as P’IP, is a function of the
shock angle p at the point where the streamline crosses the
shock wave. The differential d(A/As,) of equation (C2)
must be cmmerted into a function of p in order that the
integration may be carried out from P=900 to p= PI, where
p, is the shock angle corresponding to the unbhmted
cone or wedge. The Mach number M’ as a function of A’
can then be obtained from equations (C4) and (C3).

From reference 7 (eq. (5)), the relation between shock
angle and shock ordinate for the assumed hyperbolic wave is

& ‘_ @o.kA2(?/)9B –/3’@F tad q-l)

where

(C5)

(C6)

and 99is the shock angle at the shock .wnic point. The ratio
YS/YSB is a function of MOand depends on whether the flow
is twodimensional or axisymmetric.

The area difkential of equation (C2) cm now be espressed
a-sfollows :

I?or two-dimensional flow:

For axisymmetric flow:
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Combination of equations (C2) to (C8) yields the foUowing final eqmwions for determining the variation of J1’ with A’:
For plrmeflow:

For asisymmetric flow:

(U9)

(010)

In these equations, y’ is the linear distanco normal to the wedge or cone. For #<rl, the mea ratio A’/& in equation
(10) is equal to 2r#/y&.

Equ~tions (C9) nnd (C1O) have been integrated numerically for several Mach numbers and for several wedge nncl cono
anglw. The resulting Mach number profiles are shown in figure 4.
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